(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
*(0, x) → 0
*(x, 0) → 0
*(O(x), y) → O(*(x, y))
*(I(x), y) → +(O(*(x, y)), y)
-(x, 0) → x
-(0, x) → 0
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1)))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
O(0') → 0'
+'(0', x) → x
+'(x, 0') → x
+'(O(x), O(y)) → O(+'(x, y))
+'(O(x), I(y)) → I(+'(x, y))
+'(I(x), O(y)) → I(+'(x, y))
+'(I(x), I(y)) → O(+'(+'(x, y), I(0')))
*'(0', x) → 0'
*'(x, 0') → 0'
*'(O(x), y) → O(*'(x, y))
*'(I(x), y) → +'(O(*'(x, y)), y)
-(x, 0') → x
-(0', x) → 0'
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1')))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
O(0') → 0'
+'(0', x) → x
+'(x, 0') → x
+'(O(x), O(y)) → O(+'(x, y))
+'(O(x), I(y)) → I(+'(x, y))
+'(I(x), O(y)) → I(+'(x, y))
+'(I(x), I(y)) → O(+'(+'(x, y), I(0')))
*'(0', x) → 0'
*'(x, 0') → 0'
*'(O(x), y) → O(*'(x, y))
*'(I(x), y) → +'(O(*'(x, y)), y)
-(x, 0') → x
-(0', x) → 0'
-(O(x), O(y)) → O(-(x, y))
-(O(x), I(y)) → I(-(-(x, y), I(1')))
-(I(x), O(y)) → I(-(x, y))
-(I(x), I(y)) → O(-(x, y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+',
*',
-They will be analysed ascendingly in the following order:
+' < *'
(6) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
The following defined symbols remain to be analysed:
+', *', -
They will be analysed ascendingly in the following order:
+' < *'
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':I:1'2_0(
n4_0),
gen_0':I:1'2_0(
n4_0)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
+'(gen_0':I:1'2_0(0), gen_0':I:1'2_0(0))
Induction Step:
+'(gen_0':I:1'2_0(+(n4_0, 1)), gen_0':I:1'2_0(+(n4_0, 1))) →RΩ(1)
O(+'(+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)), I(0'))) →IH
O(+'(*3_0, I(0')))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Lemmas:
+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
The following defined symbols remain to be analysed:
*', -
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_0':I:1'2_0(
n41151_0),
gen_0':I:1'2_0(
0)) →
gen_0':I:1'2_0(
0), rt ∈ Ω(1 + n41151
0)
Induction Base:
*'(gen_0':I:1'2_0(0), gen_0':I:1'2_0(0)) →RΩ(1)
0'
Induction Step:
*'(gen_0':I:1'2_0(+(n41151_0, 1)), gen_0':I:1'2_0(0)) →RΩ(1)
+'(O(*'(gen_0':I:1'2_0(n41151_0), gen_0':I:1'2_0(0))), gen_0':I:1'2_0(0)) →IH
+'(O(gen_0':I:1'2_0(0)), gen_0':I:1'2_0(0)) →RΩ(1)
+'(0', gen_0':I:1'2_0(0)) →RΩ(1)
gen_0':I:1'2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Lemmas:
+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
*'(gen_0':I:1'2_0(n41151_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n411510)
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
The following defined symbols remain to be analysed:
-
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':I:1'2_0(
n46749_0),
gen_0':I:1'2_0(
n46749_0)) →
gen_0':I:1'2_0(
0), rt ∈ Ω(1 + n46749
0)
Induction Base:
-(gen_0':I:1'2_0(0), gen_0':I:1'2_0(0)) →RΩ(1)
gen_0':I:1'2_0(0)
Induction Step:
-(gen_0':I:1'2_0(+(n46749_0, 1)), gen_0':I:1'2_0(+(n46749_0, 1))) →RΩ(1)
O(-(gen_0':I:1'2_0(n46749_0), gen_0':I:1'2_0(n46749_0))) →IH
O(gen_0':I:1'2_0(0)) →RΩ(1)
0'
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Lemmas:
+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
*'(gen_0':I:1'2_0(n41151_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n411510)
-(gen_0':I:1'2_0(n46749_0), gen_0':I:1'2_0(n46749_0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n467490)
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Lemmas:
+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
*'(gen_0':I:1'2_0(n41151_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n411510)
-(gen_0':I:1'2_0(n46749_0), gen_0':I:1'2_0(n46749_0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n467490)
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(20) BOUNDS(n^1, INF)
(21) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Lemmas:
+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
*'(gen_0':I:1'2_0(n41151_0), gen_0':I:1'2_0(0)) → gen_0':I:1'2_0(0), rt ∈ Ω(1 + n411510)
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
-(
x,
0') →
x-(
0',
x) →
0'-(
O(
x),
O(
y)) →
O(
-(
x,
y))
-(
O(
x),
I(
y)) →
I(
-(
-(
x,
y),
I(
1')))
-(
I(
x),
O(
y)) →
I(
-(
x,
y))
-(
I(
x),
I(
y)) →
O(
-(
x,
y))
Types:
O :: 0':I:1' → 0':I:1'
0' :: 0':I:1'
+' :: 0':I:1' → 0':I:1' → 0':I:1'
I :: 0':I:1' → 0':I:1'
*' :: 0':I:1' → 0':I:1' → 0':I:1'
- :: 0':I:1' → 0':I:1' → 0':I:1'
1' :: 0':I:1'
hole_0':I:1'1_0 :: 0':I:1'
gen_0':I:1'2_0 :: Nat → 0':I:1'
Lemmas:
+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':I:1'2_0(0) ⇔ 0'
gen_0':I:1'2_0(+(x, 1)) ⇔ I(gen_0':I:1'2_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':I:1'2_0(n4_0), gen_0':I:1'2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(26) BOUNDS(n^1, INF)